Hamiltonicity of planar graphs with a forbidden minor
نویسندگان
چکیده
Tutte showed that 4-connected planar graphs are Hamiltonian, but it is well known that 3-connected planar graphs need not be Hamiltonian. We show that K2,5-minor-free 3-connected planar graphs are Hamiltonian. This does not extend to K2,5-minor-free 3-connected graphs in general, as shown by the Petersen graph, and does not extend to K2,6-minor-free 3-connected planar graphs, as we show by an infinite family of examples.
منابع مشابه
$n$-Array Jacobson graphs
We generalize the notion of Jacobson graphs into $n$-array columns called $n$-array Jacobson graphs and determine their connectivities and diameters. Also, we will study forbidden structures of these graphs and determine when an $n$-array Jacobson graph is planar, outer planar, projective, perfect or domination perfect.
متن کاملBipartite minors
We introduce a notion of bipartite minors and prove a bipartite analog of Wagner’s theorem: a bipartite graph is planar if and only if it does not contain K3,3 as a bipartite minor. Similarly, we provide a forbidden minor characterization for outerplanar graphs and forests. We then establish a recursive characterization of bipartite (2, 2)-Laman graphs — a certain family of graphs that contains...
متن کاملFree Minor Closed Classes and the Kuratowski theorem
Free-minor closed classes [2] and free-planar graphs [3] are considered. Versions of Kuratowski-like theorem for free-planar graphs and Kuratowski theorem for planar graphs are considered. We are using usual definitions of the graph theory [1]. Considering graph topologically and Kuratowski theorem, we use the notion of minor following the theory of Robertson and Seymour[2]. We say, that a grap...
متن کاملHigh-Girth Graphs Avoiding a Minor are Nearly Bipartite
Let H be a xed graph. We show that any H-minor free graph of high enough girth has a circular-chromatic number arbitrarily close to two. Equivalently, such graphs have homomorphisms into a large odd circuit. In particular, graphs of high girth and of bounded genus or bounded tree width are \nearly bipartite" in this sense. For example, any planar graph of girth at least 16 admits a homomorphism...
متن کاملHamiltonicity of Topological Grid Graphs
In this paper we study connectivity and hamiltonicity properties of the topological grid graphs, which are a natural type of planar graphs associated with finite subgraphs of the usual square lattice graph of the plane. The main results are as follows. The shortness coefficient of the family of all topological grid graphs is at most 16/17. Every 3-connected topological grid graph is hamiltonian.
متن کامل